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Introduction

On May 20th, 2024, Linea requested an audit of the gnark std library. The audit was conducted by three zkSecurity

engineers over a period of three weeks. The audit focused on the correctness and security of parts of the gnark std

library.

We found the documentation and the code to be of high quality, and the team was especially helpful in discussing the

various issues brought up during the engagement.

Scope

The scope of the audit included the following components:

Non-native arithmetic for �elds, which is used to emulate various foreign �elds, their elements and their

operations in a circuit.

Non-native arithmetic for curves, which is used to implement elliptic curves.

Multiplexers, which is used to dynamically index or range over a �xed-sized array of values in a circuit.

Range checks API, which is used to check if a value is within a given range in a circuit.

In-circuit Plonk veri�er, which is used to verify a Plonk proof in a circuit.

In-circuit KZG veri�er, which is used to batch verify KZG polynomial commitments and evaluation proofs by the in-

circuit Plonk veri�er.

Before we list the �ndings, we give a brief overview of some of the components of the gnark std library that were

audited.



Non-native Arithmetic Implementation

Simulating operations of non-native �elds in the native �eld (i.e. the circuit �eld) can be problematic as the values

might be larger than the circuit �eld, and the operations might also lead to wrap-arounds which would lead to an

incorrect result.

The general idea behind implementations of non-native arithmetic operations is to represent the non-native �eld

elements as a number of limbs in the native �eld. For example, an element in the base �eld (or scalar �eld) of

secp256k1 (~256 bits) can �t into 4 limbs of 64-bit integers, which can be represented as �eld elements in our circuit.

Then, operations are performed on the limbs themselves, potentially over�owing them, and the result is then reduced

modulo the prime of the native �eld.

Reduction

The idea of doing a modular reduction from a value  (that might have become bigger than the non-native modulus )

to a value , is to prove the following:

This is essentially the same as proving that we have the values  and  in the integers, such that :

Now, if we replace the variables with their limbs (of  bits) we obtain something like this:

The �rst idea is that the limbs  and  are provided as a hint by the prover, are range-checked (using table lookups),

and then the equation is checked.

But checking the equation as is is not possible as we already know that the modulus  is too large for our circuit �eld.

So the second idea is to represent the different values as polynomials with their limbs as coe�cients. (This way we

can instead check that the left-hand side polynomial is equal to the right-hand side polynomial.) For example, for  we

have the polynomial:

Note that this polynomial only takes the value  for .

So checking our previous equation, is reduced to checking that the following equation is true at the point :
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Since  is a root, we know that there exist a polynomial  such that:

So the third idea is to let the prover hint this polynomial , and to let them show us that this identity exists. We can

either do that at  points if the maximum degree of the polynomials is , or we can do that at a single random

point using the Schwartz-Zippel lemma.

The latter solution is what gnark does, using an externalized Fiat-Shamir protocol (which we go over in Out-of-circuit

Fiat-Shamir with Plonk) to compute a random challenge based on all of the input to the identity check.

Furthermore, since the same challenge is used for ALL �eld operations in a circuit, the computation of the challenge

AND the identity checks are deferred to the end of the circuit compilation, once the externalized Fiat-Shamir protocol

has amassed all of the inputs.

Multiplication

Multiplication is pretty straight forward, using the previous technique we check that  by checking

the following identity:

Thus, after evaluating the different polynomials at some random point , we check that

Note that  and  only need to be computed once for all multiplication checks.

Subtraction bounds

We are trying to perform  on limbs of  bits.

To avoid under�ow, we want to increase every limb  with some padding  such that:

1. they won't under�ow in the integers: .

2. the overall padding  won't matter in the equation as it'll be a multiple of the modulus: 

To satisfy 2, they create a value , then �nd its inverse of modulo  by computing as `u_2 = (-u_1) % p`.

Since we have that  and , we also have that  for some .

To satisfy 1,  and  are created such that .

First,  is created by setting its limbs to an over�owed value: 
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Second,  is created as its negated congruent value as explained above: `u_2 = (-u_1) % p`, and decomposed

into -bit limbs such that  for all .

1. we need to prove that 

2. which is equivalent to proving that 

3. by construction, 

4. , since  and 

5. by 3 and 4, we have that 

One can easily extend the proof to include b's potential over�ow , so that we have  and set .

Over�ows

When adding two limbs of -bit together, the maximum value obtained can be of  bits. For the simple reason

that using the maximum values we see that:

When multiplying two limbs of -bit together, we potentially obtain a -bit value. We can see that by multiplying the

maximum values again:

As such, ...

Sometimes, it is easier to perform an addition or multiplication without directly reducing modulo the non-native �eld

modulus. Reducing would allow us to get back to a normal representation of our non-native �eld element (e.g. four

limbs of 64 bits).

Not reducing, means that we're operating on the limbs directly, and as we've seen above this means over�ow! And

who says over�ow, also says wrapping around our circuit modulus, which is a big no no.

For this reason, the code tracks the size of the limbs (including over�ows that might have occurred) and ensures that

the next resulting limbs will have manageable over�ow (meaning that they won't overwrap the circuit modulus).

The addition is quite simple to understand, so let's focus on the multiplication here. If we were to perform a

multiplication between two integer elements and their limbs, we would compute something like this:

If we want to imagine three limbs, we would get something like this:
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Which gives us a result scattered across 5 limbs, with the middle limb being the largest.

If we generalize that, we obtain a result of  limbs, if  (resp. ) is the number of limbs of  (resp. ). With

the middle limb being of size  where  is the number of terms in the largest limb (that

middle limb).

We can see that by taking the maximum values again. We have  pairwise multiplication of limbs where  limbs have

an over�ow of  and  limbs have an over�ow of . Thus we have:

“Note: Interestingly, the over�ows are tracked element-wise, and not limb-wise. Not sure why I �nd that

interesting, maybe it wouldn't make sense to track that at the limb level because we have to care about the largest

limb to know if we need to reduce the whole element (and its limbs) or not.”

“Note: we don't care about over�ow of the total value, because we never really act on the total value. The over�ow

only ever impacts the operation between two limbs and that's it!”
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Elliptic curve gadgets

Several elliptic curves and their operations (including pairings for pairing-friendly curves) are implemented on top of

different circuit �elds.

When a curve's base �eld is the same as the circuit �eld, then the curve is implemented "natively", meaning that its

coordinates are represented directly as �eld elements in the circuit �eld, and operations are implemented using the

default arithmetic supported by the circuit �eld.

On the other hand, when a curve's base �eld differs from the circuit �eld, then the emulated �eld types are used (see

Non-native arithmetic for �elds) to emulate the coordinates of a point, increasing the number of constraints in elliptic

curve operations implemented on top.

There are three curves implemented via emulated �eld types BLS12-381, BN254, and BW6-761.

For the native curves, BLS12-377 is implemented natively on top of BW6-761 and BLS24-315 is implemented natively

on top of BW6_633.

In addition, native twisted Edward curves are de�ned for every circuit �eld. For example, Baby Jubjub for BN254.

https://neuromancer.sk/std/bls/BLS12-381
https://neuromancer.sk/std/bn/bn254
https://eips.ethereum.org/EIPS/eip-3026
https://eips.ethereum.org/EIPS/eip-2539
https://eprint.iacr.org/2021/1359.pdf
https://eprint.iacr.org/2021/1359.pdf
https://eips.ethereum.org/EIPS/eip-2494


Multiplexer gadgets

The multiplexer libraries implement dynamic indexing in data structures. Since we're in a circuit, dynamic indexing

means that lookup algorithms are at best linear, as they have to handle every value potentially being checked out.

This makes implementing array lookups, slicing arrays, associated arrays, quite complicated and costly in practice.

This section explains how the implementations work.

N-to-1 multiplexers in `mux` and `multiplexer`

There are two ways that multiplexers are implemented. The �rst way is used when the array of value is a power of 2,

allowing the use of a binary tree:

The second way is to simply create a mask: an array of bits  where a single bit is set to 1 where a value must be

retrieved. The mask is then veri�ed in circuit to be a well-formed hot vector, i.e. that it only has a single bit set in the

correct position and surrounded by 0s). The value  is �nally obtained by summing the dot products of the mask and

the values :

b

v
v



From these two ways of constructing N-to-1 multiplexers, arrays and associated arrays are implemented as simple

wrappers around these constructions.

N-to-n multiplexers in `slices`

The slice implementation allows a caller to provide an interval within an array, and nullify anything not in that interval.

The implementing uses mask to nullify the right side, and then the left side, of that interval, as picture below:

The mask is used so that values are copied from the input only when the matching bit within the mask is 1, and not

copied when the matching bit within the mask is 0. In pseudo-code:

def(input_, mask1, mask2):

    for i in range(0, len(out)):

        # mask1 = [1, 1, 1, 1, 0, 0, 0, 0]

        #                      ^

        #                     end

        out[i] = input_[i] * mask1[i]

    for i in range(0, len(out)):

        # mask 2 = [0, 0, 1, 1, 1, 1, 1, 1]

        #                 ^

        #                start

        out[i] = out[i] * mask2[i]

    # at this point out only contains the [start, end] range of input:

    # out = [0, 0, _, _, 0, 0, 0, 0]

    return out
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The mask is passed as a hint, and the following function that constrains the correctness of the mask is implemented

in the gadget:

def verify_mask(out, pos, start_val, end_val):

    # pos = 0 means that everything will be end_val

    if pos != 0:

        assert out[0] == start_val

    # pos = -1 means that everything will be start_val

    if pos != len(out) - 1:

        assert out[-1] == end_val

    # ensure the following:

    # 

    # [start_val, start_val, end_val, end_val, end_val]

    #                        ^^^^^^^

    #                          pos

    for i in range(1, len(out)):

        if i != pos:

            assert out[i] = out[i-1]



Range checks implementation

Range checks are gadgets that check if a value  belongs to some interval . The lower-level APIs that are

exposed in gnark's std library allow developers to check speci�cally that a value is in the range  for some . In

other words, a range check enforces that a value  is  bits.

These range checks are implemented in two ways: either by veri�ably decomposing the value into an -bit array--

where veri�ably means that  is added as a constraint in the circuit-- or by using a table lookup.

To range check values with a table lookup, the idea is pretty simple: create a table of all the values between 0 and

some power of 2 (decided dynamically at compile time based on the bit sizes requested by the circuit range checks).

Then cut a value  in limbs of size that power of 2 (veri�ably, as explained above), and check that each limb is in the

table (via a table lookup argument is out of scope for this document).

As the last limb might not be a perfect power of 2, its value is shifted to the left to �t the max value of the table.

For example, if we need to check that a value  is 9 bits using a table that gathers elements from  to , then we

will need three limbs of 4 bits, with the last limb being 1 bit. To check the last limb, the value is shifted by 3 bits to the

left.
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Out-of-circuit Fiat-Shamir with Plonk

The computation of expensive functions in circuits are quite challenging, or even self-defeating in some cases. For

this reason, Linea designed and implemented a scheme to delegate a speci�c computation: deriving randomness in a

circuit. This design was introduced in the Fiat-Shamir computation of GKR statements in Recursion over Public-Coin

Interactive Proof Systems; Faster Hash Veri�cation (BSB22), but is used in the context of non-native arithmetic in the

code we looked at.

To understand how the scheme works, �rst let's take a simpler scenario and solution. Imagine that at some points in

a circuit we want to compute the hash of some values, `HASH(a, b, c)`, but that the hash function is very expensive

to compute.

One way to solve that, is to just hint the result of the computation `d = HASH(a, b, c)` in the circuit (as the prover),

and then expose `a, b, c, d` as public inputs. (And of course, make sure that the circuit wires these new public

input values to their associated witness values in the circuit.) We illustrate this in the following diagram (where the

pink rows are the new public inputs that are exposed, and `d` is the result of the hash function):

The veri�er can then verify that the digest `d` was computed correctly before interpolating the public input vector. (Or

better, produce `d` themselves and insert it into the public input vector to avoid forgetting to check it. This works as

plonk checks that the following constraint checks out as part of the protocol (if you imagine that other wires and

gates are not enabled on the public input rows):

But at this point, the witness values that take part in the hash computation are exposed in the public input, and are

thus leaked...

Can we hide these values to the veri�er? Notice that for Fiat-Shamir use cases, we do not need to compute exactly the

`HASH` function, but rather we need to generate random values based on the inputs. That's right, it does not matter

L(x) − PI(x) = 0

https://eprint.iacr.org/2022/1072
https://eprint.iacr.org/2022/1072


how we generate these random values as long as they are based on the private inputs. As such, we can relax our

requirements and we can do something like this instead: `d = HASH(commit(a, b, c))`.

As the challenge is used for Fiat-Shamir, we can leave it in the public input, but now the inputs can be kept in the

witness. Although, they are kept in rows that resemble public input rows, in that the left wire is enabled and no gate is

selected.

Then, a hiding commitment of the values is produced by the prover and sent to the veri�er, as we show in this

diagram:

We are almost here, there's still one more problem: we need to prevent the prover from using this new commitment to

alter random witness values. To do this, the veri�er key includes one more selector vector that dictates where this

new commitment can apply:

Which ends up producing a constraint that looks like this (if again, we ignore the gates and wires not enabled in these

rows):

Note that the implementation we looked at was generalized to work with  Fiat-Shamir instances by having 

commitments  and  committed selectors , as well as  reserved rows of public inputs for the 

L(x) − PI(x) − V (x) ⋅ Qcp(x) = 0

n n
[V  (x)]i n [Qcp  (x)]i n n



digests.

On top of that, they evaluate commitments to the selectors  during the linearization phase of Plonk, so as

not to care about the randomization of the committed inputs to Fiat-Shamir, although the commitment is still

randomized by randomizing entries of the  vector in rows that are not activated.

[Qcp  (x)]i

Qcp



In-Circuit KZG Veri�cation

The in-circuit KZG implementation in `gnark/std/commitments/kzg` closely follows the one in the gnark-crypto

library.

Single-Point Opening Proof Veri�cation

For claimed value  of polynomial  at point , KZG polynomial commitment veri�cation is implemented

as a pairing check:

The commitment of  is a  element .

The evaluation point is  — an element of the scalar �eld of .

The opening proof is just 2 values:

 — commitment of the quotient polynomial ,

 — claimed value of  at evaluation point .

The veri�cation key consists of

 — generator of group  scaled to 1 and  — toxic secret (supposed to be) destroyed after the

generation of SRS (powers of  multiplied with  and ).

 — generator of group .

The above check is equivalent to checking that

Which it should if there exists the quotient polynomial , de�ned as

The prover provides  as part of the proof, which is highly unlikely (with probability ) if the prover

doesn't know the polynomial .

Fold Batch Opening Proof at a Single Point

This method is used by the in-circuit Plonk veri�er to fold multiple evaluation proofs at a single point .
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It takes:

a list commitments ,

evaluation point ,

a batch opening proof which consists of:

a single quotient polynomial commitment ,

a list of values of the committed polynomials at the evaluation point .

And produces:

folded commitment , and

folded opening proof  — here, the quotient commitment is simply passed through from the input,

and  is a produced folded evaluation.

A random challenge  is obtained by hashing all the input data, except the quotient commitment  because

it is computed by the prover at a later stage and is itself dependent on .

The logic from here is straightforward. Folded commitment:

Folded evaluation:

Multi-Point Batch Veri�cation

This method is used by the in-circuit Plonk veri�er instead of veri�cation steps 11-12 in the Plonk paper.

Multi-point batch veri�cation of KZG commitments and opening proofs takes a list of triplets (for ), of:

polynomial commitment 

evaluation point 

opening proof 

All of them are checked against a single veri�cation key .

The �nal check boils down to a pairing check:

It looks similar the one for a single KZG proof veri�cation. We will see in a second, how its components are obtained.
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A random value  is produced by hashing all the input data. Then it's used to produce folded values for the �nal

pairing check.

Folded quotients:

Folded products of evaluation points and quotients:

Folded evaluations:

Folded commitments:
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Findings

Below are listed the �ndings found during the engagement. High  severity �ndings can be seen as so-called "priority

0" issues that need �xing (potentially urgently). Medium  severity �ndings are most often serious �ndings that have

less impact (or are harder to exploit) than high-severity �ndings. Low  severity �ndings are most often exploitable in

contrived scenarios, if at all, but still warrant re�ection. Findings marked as informational  are general comments that

did not �t any of the other criteria.

ID COMPONENT NAME RISK

00 std/multicommit/nativecommit.go

MultiCommitter Scheme
May Converge To Using
Constant Challenge 1
After Many Calls

High

01 std/math/bitslice/partition.go
Partition Function Is Not
Sound

High

02 std/algebra/native

GLV Decomposition In
Scalar Multiplication In
Native Field Is Not
Sound

High

03 std/math/uints
Conversion Of Uint Type
Is Not Sound

High

04 std/math/emulated

Non-Cryptographic
Hash Function Could
Lead To
Underconstrained
Foreign Elements

Medium

05 std/math/emulated/�eld_assert.go
Incorrect Condition May
Lead To Over�ow Native
Field In IsZero Function

Medium



ID COMPONENT NAME RISK

06 std/hash/mimc
MiMC Implementation
Is Vulnerable To Length-
Extension Attacks

Medium

07 std/math/emulated/custommod.go
Missing Constraints
May Lead To Under�ow
In modSub Function

Medium

08 std/math/emulated

Reduce Function Is
Misleading And Could
Lead To Soundness and
Completeness Issues

Medium

09 std/math/bits/naf.go
Missing Constraints In
ToNAF Function

Medium

0a std/recursion/wrapped_hash.go

wrapped_hash Is Not
Collision Resistant With
Input Of Different
Length

Low

0b std/math/emulated
Field API Is A Leaky
Abstraction

Informational



# 00 - MultiCommitter Scheme May Converge To Using Constant Challenge 1
After Many Calls

std/multicommit/nativecommit.go

High

Description. `multicommitter` collects variables from multiple functions and commits them with underlying

`Committer` to get the initial commitment . Then it derives the commitment for all the functions by continuously

squaring: .

func (mct *multicommitter) commitAndCall(api frontend.API) error {

    ...

    cmt, err := commiter.Commit(mct.vars...)

    ...

    for i := 1; i < len(mct.cbs); i++ {

        // cmt <-- cmt * cmt

        cmt = api.Mul(cmt, cmt)

        if err := mct.cbs[i](api, cmt); err != nil {

            return fmt.Errorf("callback %d: %w", i, err)

        }

    }

    return nil

}

The way it derives the commitement is not binding. This will make the �at-shamir transformation not sound.

One observation is that: in prime �eld , for some  the following sequence will converge to :

This is because if  then .

This means if there are many  in  that makes the sequence converge to , the attacker can easily �nd two

different inputs both committed to . This will make `multicommitter` lose binding.

Now let's see in  how many  will eventually converge to  in the sequence: 

Denote  as the generator in . Then . Then  for some . We have:

Suppose the sequence converge to  at :
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This means  divides :

Factorize  as , with  being the largest possible value. If , then  for , implying

that  and . This means the sequence converges to  if and only if .

Consequently, if , the sequence converges to  in at most  steps.

In , there are approximately  elements divisible by . If one randomly chooses an element in , the probability

that the element is divisible by  (i.e., the sequence converges to ) is .

For some prime �elds,  is non-negligible. For instance, gnark supports the Stark Curve, where 

. Consequently, , which means  and . Suppose the circuit

makes  calls to the `multicommitter`. Then, an attacker could �nd two different inputs, both committed to  in

the 192nd call, in  attempts.

This indicates that in some prime �elds, the `multicommitter` is not binding.

Recommendation: Avoid using a squaring sequence. Consider using  to derive the sequence.

Client Response. https://github.com/Consensys/gnark/pull/1212

c ≡2n
g ≡k⋅2n

1 mod p

p − 1 k ⋅ 2n

(p − 1) ∣ k ⋅ 2n

p − 1 a ⋅ 2m m a ∣ k a ⋅ 2 ∣m k ⋅ 2n m ≤ n

(p − 1) ∣ k ⋅ 2n g ≡k⋅2n
1 mod p 1 a ∣ k

a ∣ k 1 m

F  p p/a a F  p

a 1 1/a

1/a p = 2 +251 17 ⋅

2 +192 1 p − 1 = 2 ⋅192 (2 +59 17) a = 2 +59 17 m = 192
192 1

O(2 +59 17)

ci

https://docs.starkware.co/starkex/crypto/stark-curve.html
https://github.com/Consensys/gnark/pull/1212


# 01 - Partition Function Is Not Sound

std/math/bitslice/partition.go

High

Description. The `Partition()` function partitions a value `v` into two parts (a lower part and an upper part) at a

speci�c bit offset. In order to be sound, the following should hold:

1. .

2. .

3. , where .

Unfortunately, in the implementation the upper part is incorrectly constrained to be . Then any

lower and upper pairs that satisfy the �rst two constraints will pass the check. Thus, the implementation is not sound.

func Partition(api frontend.API, v frontend.Variable, split uint, opts ...Option) (lower, upper 

frontend.Variable) {

    ...

    upperBound := api.Compiler().FieldBitLen()

    if opt.digits > 0 {

        upperBound = opt.digits

    }

    // incorrect constraint here

    rh.Check(upper, upperBound)

    rh.Check(lower, int(split))

    m := big.NewInt(1)

    m.Lsh(m, split)

    composed := api.Add(lower, api.Mul(upper, m))

    api.AssertIsEqual(composed, v)

    return

}

Besides, the function supports input `nbDigits` to constrain the bit number of `v`. If nbDigits is not speci�ed

(`nbDigits = api.Compiler().FieldBitLen()`), there can be two ways to split the value. For example, to split , we

can make  equals to  or , where p is the �eld modulus. If nbDigits is speci�ed and

`nbDigits > api.Compiler().FieldBitLen()` holds, there will be multiple ways to split the value.

Recommendation. Constrain the upper part to be of the correct size:

rh.Check(upper, upperBound - int(split))

In addition, add an assertion in the function to ensure that

v = lower + 2 ×split upper
lower < 2split

upper < 2split′
split =′ nbScalar − split

upper < 2nbScalar

1
lower + 2 ×split upper 1 p + 1



nbDigits < api.Compiler().FieldBitLen()

Client Response. https://github.com/Consensys/gnark/pull/1165

https://github.com/Consensys/gnark/pull/1165


# 02 - GLV Decomposition In Scalar Multiplication In Native Field Is Not Sound

std/algebra/native

High

Description. gnark uses GLV decomposition to speedup scalar multiplication in native �eld. To compute `P=[s]Q`,

one key step is to decompose `s` into two smaller parts `s1` and `s2` such that `s1 + λ * s2 == s mod r`, where

`λ` is �xed value and `r` is the scalar �eld. To do that, gnark uses a hint and obtains `s1` and `s2`, it then check if

the equation holds:

    // s1 + λ * s2 == s mod r

    api.AssertIsEqual(

        api.Add(s1, api.Mul(s2, cc.lambda)),

        api.Add(s, api.Mul(cc.fr, m)),

    )

This check is intended to ensure there exists `m` such that `s1 + λ * s2 == s + m*r`. However, this check is

performed in the native �eld and may incur over�ow. It's actually checking that there exists `m` and `n` such that `s1

+ λ * s2 == s + m*r + n*baseField(i.e. nativeField)`. As `m` and `n` can be arbitrary values, there can be

multiple ways to decompose `s`. The decomposition check is not sound.

Recommendation. The decomposition check should be done in the scalar �eld instead of the base �eld (i.e. native

�eld). Consider performing the check using an emulated �eld types.

Client Response. https://github.com/Consensys/gnark/pull/1167

https://github.com/Consensys/gnark/pull/1167


# 03 - Conversion Of Uint Type Is Not Sound

std/math/uints

High

Description. Gnark's standard library de�nes some gadgets to emulate uint32 and uint64 types.

An important aspect of these interfaces is to ensure that the conversion from native circuit �eld elements and the uint

types is sound. This is done through the `ValueOf` and `ToValue` functions. Here is the `ValueOf` function that is

written generically for both the uint32 and uint64 types:

func (bf *BinaryField[T]) ByteValueOf(a frontend.Variable) U8 {

    bf.rchecker.Check(a, 8)

    return U8{Val: a, internal: true}

}

func (bf *BinaryField[T]) ValueOf(a frontend.Variable) T {

    var r T

    bts, err := bf.api.Compiler().NewHint(toBytes, len(r), len(r), a)

    if err != nil {

        panic(err)

    }

    // TODO: add constraint which ensures that map back to

    for i := range bts {

        r[i] = bf.ByteValueOf(bts[i])

    }

    return r

}

The problem with this code is that the hinted bytestring is not checked to be a correct representation of the original

value. As such, it can be arbitrarily set to any value by the prover, leading to a soundness issue.

Recommendation. As with the `ToBits` function, recompose the bytestring into a value and assert that it is equal to

the original one. For example:

    for i := range bts {

        r[i] = bf.ByteValueOf(bts[i])

    }

+    expectedValue := bf.ToValue(r)

+    bf.api.AssertIsEqual(a, expectedValue)  

In addition, document that over�ows are forbidden, as the current implementation does not allow for over�ows.

Client Response. https://github.com/Consensys/gnark/pull/1139

https://github.com/Consensys/gnark/pull/1139


# 04 - Non-Cryptographic Hash Function Could Lead To Underconstrained Foreign
Elements

std/math/emulated

Medium

Description. The `enforceWidthConditional` is used in several places in the circuit to constrain that the limbs of

foreign �eld elements are correctly formed (i.e. that they are of the correct bitlength).

The function relies on a hash function `HashCode()` to mark if a linear combination has been seen and constrained

before:

func (f *Field[T]) enforceWidthConditional(a *Element[T]) (didConstrain bool) {

    // TRUNCATED...

    for i := range a.Limbs {

        // TRUNCATED...

        if vv, ok := a.Limbs[i].(interface{ HashCode() uint64 }); ok {

            // okay, this is a canonical variable and it has a hashcode. We use

            // it to see if the limb is already constrained.

            h := vv.HashCode()

            if _, ok := f.constrainedLimbs[h]; !ok {

                // we found a limb which hasn't yet been constrained. This means

                // that we should enforce width for the whole element. But we

                // still iterate over all limbs just to mark them in the table.

                didConstrain = true

                f.constrainedLimbs[h] = struct{}{}

            }

        } else {

            // we have no way of knowing if the limb has been constrained. To be

            // on the safe side constrain the whole element again.

            didConstrain = true

        }

    }

    if didConstrain {

        f.enforceWidth(a, true)

    }

    return

}

This hash function is unfortunately not cryptographically secure, as the following code shows:

// -- gnark/frontend/internal/expr/linear_expression.go --

func (l LinearExpression) HashCode() uint64 {

    h := uint64(17)



    for _, val := range l {

        h = h*23 + val.HashCode() // TODO @gbotrel revisit

    }

    return h

}

// -- gnark/frontend/internal/expr/term.go --

func (t Term) HashCode() uint64 {

    return t.Coeff[0]*29 + uint64(t.VID<<12)

}

As such, it might be possible for a malicious circuit developer to create a circuit in which two different circuit variables

collide and produce the same digest, leading to only one of them being properly constrained.

Note that other parts of the gnark library use the `HashCode()` function, for example, `MarkBoolean` and

`IsBoolean`.

Recommendation. We recommend using a cryptographically secure hash function that would have both collision

resistance and pre-image resistance, in order to ensure that circuit builders cannot produce stealthily

underconstrained circuits.

Client Response. https://github.com/Consensys/gnark/pull/1197

https://github.com/Consensys/gnark/pull/1197


# 05 - Incorrect Condition May Lead To Over�ow Native Field In IsZero Function

std/math/emulated/�eld_assert.go

Medium

Description. `IsZero` returns a boolean indicating if all the limbs of the element are exactly zero. The safe (slow)

way is to check if each of the limbs is zero one-by-one. The fast way is to check if the sum of all the limbs is zero,

provided it won't cause an over�ow in the native �eld. However, the condition of judging if it will cause over�ow is

�ipped.

// IsZero returns a boolean indicating if the element is strictly zero.

func (f *Field[T]) IsZero(a *Element[T]) frontend.Variable {

    ...

    // every addition adds a bit to the overflow

    totalOverflow := len(ca.Limbs) - 1

    // the condition here is incorrect.

    if totalOverflow < int(f.maxOverflow()) {

        // safe way: check if each limb is zero, one by one.

        res := f.api.IsZero(ca.Limbs[0])

        for i := 1; i < len(ca.Limbs); i++ {

            res = f.api.Mul(res, f.api.IsZero(ca.Limbs[i]))

        }

        return res

    }

    // fast way: check if the sum of all the limbs is zero.

    limbSum := ca.Limbs[0]

    for i := 1; i < len(ca.Limbs); i++ {

        limbSum = f.api.Add(limbSum, ca.Limbs[i])

    }

    return f.api.IsZero(limbSum)

}

Here, if `totalOverflow >= int(f.maxOverflow())` is true, it means the sum will cause an over�ow and it should

use the safe way. However, The code indirectly routes it to the fast way, which may lead to over�ow. A malicious

prover can prove non-zero element to be zero utilizing the over�ow.

In current gnark's parameter setting, `totalOverflow < int(f.maxOverflow())` is always true. This means it will

always route to the safe way. Therefore it only leads to downgraded e�ciency. However, it can be problematic for the

downstream users if they have different parameter settings.

Recommendation. Change it to the right condition. For example:

func (f *Field[T]) IsZero(a *Element[T]) frontend.Variable {

    ...



    if totalOverflow > int(f.maxOverflow())

    ...

}

Client Response. https://github.com/Consensys/gnark/pull/1145

https://github.com/Consensys/gnark/pull/1145


# 06 - MiMC Implementation Is Vulnerable To Length-Extension Attacks

std/hash/mimc

Medium

Description. Gnark's standard library implements the MiMC hash function using the Miyaguchi–Preneel construction.

The Miyaguchi–Preneel construction is a known way to turn a block cipher into a compression function, which can

then be used to build a hash function.

Such an instantiation is well-studied and known to be secure against most attacks, except length-extension attacks.

Length-extension attacks occur when a secret is used in the hash function to produce a keyed hash, for example, if

one produces a digest as `hash(secret || public_data)` where `||` is a concatenation, someone else could pick

up where the hashing was left off and produce a new digest `hash(secret || public_data || more_data)`

without knowing the secret. Fundamentally, this is because the digest produced by the algorithm is the internal state

of the hash function, which can be reused without issue to continue hashing.

As such, one could imagine an innocent developer producing a circuit where `data` and the digest are made public

(through public inputs, for example) and then used in another protocol and circuit to produce a different keyed-hash

on some related data (as explained above). For example:

type Circuit1 struct {

    Key frontend.Variable `gnark:",secret"`

    Data [1]frontend.Variable `gnark:",public"`

    Expected frontend.Variable `gnark:",public"`

}

type Circuit2 struct {

    Key frontend.Variable `gnark:",secret"`

    Data [2]frontend.Variable `gnark:",public"`

    Expected frontend.Variable `gnark:",public"`

}

func (c *CircuitN) Define(api frontend.API) error {

    h, err := mimc.New(api)

    if err != nil { return err }

    h.Write(c.Key)

    h.Write(c.Data[:]...)

    res := h.Sum()

    api.AssertIsEqual(res, c.Expected)

}

In addition, the MiMC website's FAQ also states:

https://eprint.iacr.org/2016/492
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Length_extension_attack
https://mimc.iaik.tugraz.at/pages/faq.php


“In our original paper we propose to instantiate a hash function via plugging the MiMC permutation into a Sponge

construction. The reason back then was security analysis. A mode like Miyaguchi-Preneel makes it harder, and in

2016 we did not feel con�dent in proposing this. In the meanwhile we did more security analysis, improving our

understanding and con�dence, but our recommendation remains unchanged.”

Note that we could not �nd usages of this API being used with secret data, but the API itself remains exposed to end

users and does not forbid the caller to use it with secret data.

Recommendation. Document the API to make it clear that it should not be used with secret data.

Client Response. https://github.com/Consensys/gnark/pull/1198

https://github.com/Consensys/gnark/pull/1198


# 07 - Missing Constraints May Lead To Under�ow In modSub Function

std/math/emulated/custommod.go

Medium

Description. `modSub` function performs sub operation on emulated `Element` over given modulus `p`. To calculate

`(a - b) % p`, gnark uses a padding `pad` to avoid any possible under�ow and over�ow in the native �eld. Then it

calculates `a[i] + pad[i] - b[i]` for all `i` and recomposes the result.

The `pad` should satis�es:

1. correctness: `pad % p = 0`.

2. avoid under�ow: `pad[i] >= b[i]` for all i.

3. avoid over�ow `pad[i] + a[i] < native_field` for all i.

Unfortunately, `pad` is given by a hint function and misses a constraint to enforce condition 2. A malicious prover

may provide a `pad` that satis�es 1 and 3, but causes under�ow when calculating `a[i] + p[i] - b[i]`. In this

way the `modSub` function will return incorrect results.

func (f *Field[T]) computeSubPaddingHint(overflow uint, nbLimbs uint, modulus *Element[T]) 

*Element[T] {

    var fp T

    inputs := []frontend.Variable{fp.NbLimbs(), fp.BitsPerLimb(), overflow, nbLimbs}

    inputs = append(inputs, modulus.Limbs...)

    res, err := f.api.NewHint(subPaddingHint, int(nbLimbs), inputs...)

    if err != nil {

        panic(fmt.Sprintf("sub padding hint: %v", err))

    }

    for i := range res {

        // enforce condition 3

        f.checker.Check(res[i], int(fp.BitsPerLimb()+overflow+1))

    }

    padding := f.newInternalElement(res, fp.BitsPerLimb()+overflow+1)

    // enforce condition 1

    f.checkZero(padding, modulus)

    return padding

}

Another issue is incorrect `overflow` setting. The `overflow` of `padding` should be `overflow+1` instead of

`fp.BitsPerLimb()+overflow+1`. In the `modSub` function, `nextOverflow` is calculated as `nextOverflow :=

max(b.overflow+1, a.overflow) + 1`. This will be an issue if `nextOverflow > f.maxOf()`.

Recommendation. Add constraint to enforce `pad[i] >= b[i]` for all i. Correctly enforce the over�ow setting.



Client Response. https://github.com/Consensys/gnark/pull/1200

https://github.com/Consensys/gnark/pull/1200


# 08 - Reduce Function Is Misleading And Could Lead To Soundness and
Completeness Issues

std/math/emulated

Medium

Description. Non-native �eld elements are represented as `Element` variables in gnark circuits. Such variables can

be provided by the prover and are checked to have limbs of the correct bitlength (as explained in the introduction of

this report). Let's call this bitlength .

There are two kinds of over�ows that can happen with these values:

1. bit over�ows: when the limbs comprising the `Element` variable now need to track larger bitstrings (e.g. -bit

limbs) because an over�ow might have happened. This also means that the value being tracked might potentially

be larger than the modulus.

2. modulus over�ow with no bit over�ow: the value is larger than the modulus, but its limbs did not have bit

over�ows. This is the kind of over�ow that we are interested in.

“Note that `Element` variables that are known to have no bit over�ows are marked as `internal`.”

A `Reduce` function is provided which only performs a modular reduction if it detects no bit over�ow. This means

that it is possible that the function returns a value larger than the modulus in the case of modulus over�ow with no bit

over�ow. For example, it could return  with  the foreign modulus.

This behavior implies that the codebase makes the following general assumptions:

1. Either functions don't care about modulus over�ow with no bit over�ow, as they can deal with it. This is the case

of many of the non-native arithmetic operations like `Add` and `Mul`.

2. Or functions care, and they will call the `AssertIsInRange()` function to prevent malicious provers from using

values that are larger than the modulus.

Both of these assumptions are not necessarily true.

The �rst assumption doesn't hold for the `ToBits` and `Exp` functions. For example, `ToBits(f+1)` and

`ToBits(1)` will return different bits. Looking at `ToBits` �rst, we can see that the comment below is misleading

because the `Reduce` function won't reduce a modulus over�ow with no bit over�ow (and thus won't generate a

canonical representation of Element as a bitstring).

// ToBits returns the bit representation of the Element in little-endian (LSB

// first) order. The returned bits are constrained to be 0-1. The number of

// returned bits is nbLimbs*nbBits+overflow. To obtain the bits of the canonical

// representation of Element, reduce Element first and take less significant

n

n + 1

f + 1 f



// bits corresponding to the bitwidth of the emulated modulus.

func (f *Field[T]) ToBits(a *Element[T]) []frontend.Variable {

    f.enforceWidthConditional(a)

    ...

The `Exp` function uses `ToBits` to generate the bits and perform exponentiation by squaring. As `ToBits` may

generate different bits, `Exp` will generate incorrect results.

// Exp computes base^exp modulo the field order. The returned Element has default

// number of limbs and zero overflow.

func (f *Field[T]) Exp(base, exp *Element[T]) *Element[T] {

    expBts := f.ToBits(exp)

    n := len(expBts)

    res := f.Select(expBts[0], base, f.One())

    base = f.Mul(base, base)

    for i := 1; i < n-1; i++ {

        res = f.Select(expBts[i], f.Mul(base, res), res)

        base = f.Mul(base, base)

    }

    res = f.Select(expBts[n-1], f.Mul(base, res), res)

    return res

}

Take the below case as an example. A malicious prover can choose `f.ModMul(b, c)` to be either `l` or `f+l`.

Then further choose the result of `f.ModExp(a, l)`:

l := f.ModMul(b, c)

res := f.ModExp(a, l)

Going back to our two cases, the second case (calling `AssertIsInRange` to enforce a smaller-than-modulus value)

can be seen, for example, in the start of the implementation of the `IsZero` function:

// AssertIsInRange ensures that a is less than the emulated modulus. When we

// call [Reduce] then we only ensure that the result is width-constrained, but

// not actually less than the modulus. This means that the actual value may be

// either x or x + p. For arithmetic it is sufficient, but for binary comparison

// it is not. For binary comparison the values have both to be below the

// modulus.

func (f *Field[T]) AssertIsInRange(a *Element[T]) {

    // we omit conditional width assertion as is done in ToBits down the calling stack

    f.AssertIsLessOrEqual(a, f.modulusPrev())

}

// IsZero returns a boolean indicating if the element is strictly zero. The

// method internally reduces the element and asserts that the value is less than

// the modulus.

func (f *Field[T]) IsZero(a *Element[T]) frontend.Variable {



    ca := f.Reduce(a)

    f.AssertIsInRange(ca)

The issue with this pattern is that it assumes that no illegitimate `Element` value (one that would be larger than the

modulus but with no bit over�ow) can be produced at runtime, besides a direct hint from the prover (which in this

case would not matter, as they would be shooting themselves in the foot).

While this might be true, it is not necessarily obviously true. We can expect that all �eld operations will increase the

over�ow of the element variable, which will in turn trigger the `Reduce` function and perform a modular reduction in

legitimate cases (before the call to `AssertIsLessOrEqual`), but further code changes might introduce edge cases

where this is not true anymore, potentially leading to completeness issues.

Recommendation. Change the name of the `Reduce` function to avoid confusing developers making use of the

function. Keep track of `Element` variables that might not be "fully reduced", in the sense that they might be larger

than the modulus, and enforce a modular reduction if this is the case in functions like `ToBits` and `Exp`.

Furthermore, consider taking a slightly different approach and always enforcing that `Element` values are less than

the modulus if they have no bit over�ow. See Field API Is A Leaky Abstraction for a related issue.

Client Response. https://github.com/Consensys/gnark/issues/1147

https://github.com/Consensys/gnark/issues/1147


# 09 - Missing Constraints In ToNAF Function

std/math/bits/naf.go

Medium

Description. `ToNAF` returns the NAF decomposition of given input. The non-adjacent form (NAF) of a number is a

unique signed-digit representation, in which non-zero values cannot be adjacent.

gnark uses a hint and obtains the NAF decomposition `bits`. Then it performs checks to ensure the sum of the

`bits` equals to the input value and each of the `bits` is `-1`, `0` or `1`.

// ToNAF returns the NAF decomposition of given input.

// The non-adjacent form (NAF) of a number is a unique signed-digit representation,

// in which non-zero values cannot be adjacent. For example, NAF(13) = [1, 0, -1, 0, 1].

func ToNAF(api frontend.API, v frontend.Variable, opts ...BaseConversionOption) 

[]frontend.Variable {

    ...

    c := big.NewInt(1)

    bits, err := api.Compiler().NewHint(nNaf, cfg.NbDigits, v)

    if err != nil {

        panic(err)

    }

    var Σbi frontend.Variable

    Σbi = 0

    for i := 0; i < cfg.NbDigits; i++ {

        Σbi = api.Add(Σbi, api.Mul(bits[i], c))

        c.Lsh(c, 1)

        if !cfg.UnconstrainedOutputs {

            // b * (1 - b) * (1 + b) == 0

            // TODO this adds 3 constraint, not 2. Need api.Compiler().AddConstraint(...)

            b := bits[i]

            y := api.Mul(api.Sub(1, b), api.Add(1, b))

            api.AssertIsEqual(api.Mul(b, y), 0)

        }

    }

    // record the constraint Σ (2**i * b[i]) == v

    api.AssertIsEqual(Σbi, v)

    return bits

}

https://en.wikipedia.org/wiki/Non-adjacent_form


Unfortunately, the function doesn't enforce "non-zero values cannot be adjacent" in the circuit. Thus a malicious

prover can generate a representation with adjacent non-zero values, which may poison the subsequent computation.

Recommendation. Add constraints to enforce "non-zero values cannot be adjacent" in the circuit.

Client Response. https://github.com/Consensys/gnark/pull/1164

https://github.com/Consensys/gnark/pull/1164


# 0a - wrapped_hash Is Not Collision Resistant With Input Of Different Length

std/recursion/wrapped_hash.go

Low

Description. Gnark uses wrapped_hash to wrap MiMC function for computing the challenges inside the circuit. The

inputs are bits (or native �eld elements) and outputs are elements in the emulated �eld.

wrapped_hash batches the input bits and only writes a whole batch at a time to the underlying hash function. For the

last batch, it will �ll with zeros if the input bits don't �ll up the batch. This means that wrapped_hash won't distinguish

whether the trailing bits are input bits or just padding. Then, it's easy to construct two preimages of different lengths

that produce the same hash:

func TestCollision(t *testing.T) {

    h, err := recursion.NewShort(ecc.BLS12_377.ScalarField(), ecc.BN254.ScalarField())

    if err != nil {

        panic(err)

    }

    h.Write([]byte{0x00})

    hash := h.Sum(nil)

    fmt.Printf("%x\n", hash) // 34373b65f439c874734ff51ea349327c140cde2e47a933146e6f9f2ad8eb17

    h.Reset()

    h.Write([]byte{0x00})

    h.Write([]byte{0x00})

    fmt.Printf("%x\n", h.Sum(nil)) // 

34373b65f439c874734ff51ea349327c140cde2e47a933146e6f9f2ad8eb17

}

Currently, this is not an issue because wrapped_hash is created to generate challenges that have a �xed input length.

However, it may introduce vulnerabilities when downstream users use it.

Recommendation. Add warnings in the doc to avoid misuse.

Client Response. https://github.com/Consensys/gnark/pull/1198

https://github.com/Consensys/gnark/pull/1198


# 0b - Field API Is A Leaky Abstraction

std/math/emulated

Informational

Description. Foreign �eld elements are represented as `Element` variable types in circuits.

`Element` variables have an internal �eld called `internal` which is set only if created through

`field.NewElement` or through the foreign �eld methods de�ned in the `emulated` package. This �eld indicates

that the limbs of the `Element` variable were constrained to be of the correct bitlength.

This `Element` type can be introduced through hints, or through private inputs to the circuit if included in the circuit

struct. For example:

type someCircuit struct {

    SomeVariable Element[Secp256k1Fp]

}

When passed as private inputs, `Element` variables do not have their limbs constrained and as such do not have their

`internal` �eld set to `true`.

For this reason, it is therefore the responsibility of functions making use of it to remember to call

`enforceWidthConditional` to make sure that the �eld element gets properly constrained (i.e. number of limbs is

correct and each limb is of the correct bitlength). For example, the `checkZero`, `Reduce`, `Select`, `Lookup2`,

`Mux`, `AssertIsEqual`, `mulMod`, `reduceAndOp`, `ToBits`, `Sum`, all call the `enforceWidthConditional`

function.

“Note: it still does not mean that the value is less than the modulus, as we discuss in Reduce Function Is

Misleading And Could Lead To Soundness and Completeness Issues.”

This is a dangerous pattern that could lead to soundness issues if functions of the standard library, or user-written

functions to extend the standard library, forget to call `enforceWidthConditional` on an `Element` variable.

Recommendation. We recommend ensuring that no `Element` variable can be created without its limb being properly

constrained. This could be done in the compiler `Compile()` function in the `parseCircuit()` logic that walks

through the circuit's public and private inputs.

Client Response. Won't �x ("We have considered another approach, but the current approach allows us to decouple

non-native arithmetic from the circuit frontend design, keeping it relatively lightweight.")


